Yes, find_root() - it's a way out if I have an interval.
But what's the use of form x=somefun(x)?
On Sat, 2007-11-17 at 07:38 -0800, Richard Fateman wrote:
> Solve tries to find exact solutions. This doesn't have one, so it tries to
> simplify the answer to the form x=somefun(x).
>
> but
> find_root(r,x,0.3,0.7); appears to work to get an answer. Why not use
> find_root if you want only a single approximate root, and you can provide an
> interval?
>
>
> I got 0.5236083984375
>
>
> > -----Original Message-----
> > From: maxima-bounces at math.utexas.edu
> > [mailto:maxima-bounces at math.utexas.edu] On Behalf Of Mansur Marvanov
> > Sent: Saturday, November 17, 2007 1:59 AM
> > To: maxima at math.utexas.edu
> > Subject: about solve()
> >
> > Good time!
> >
> > I have function f(x). I can't get certain value of f(x)=0
> > from solve().
> > Why is it solved with sin(x) in answer?
> >
> > (%i56) f(x):=144 * sin(x) + 12*sqrt(3)*%pi + 36*x^2 + %pi^2
> > - 72 - 12*%
> > pi*x - 72*sqrt(3)*x$
> >
> > (%i57) solve(f(x));
> > 6 sqrt(5 - 4 sin(x)) - %pi - 6 sqrt(3)
> > (%o57) [x = - --------------------------------------,
> > 6
> > 6 sqrt(5 - 4 sin(x)) + %pi + 6 sqrt(3)
> > x = --------------------------------------]
> > 6
> >
> >
> > I want to get something like this:
> >
> > (%i58) find_root(f(x),x,0.3,0.7);
> > (%o58) 0.52360846201579
> >
> > --
> > Mansur Marvanov <nanorobocop at gmail.com>
> > _______________________________________________
> > Maxima mailing list
> > Maxima at math.utexas.edu
> > http://www.math.utexas.edu/mailman/listinfo/maxima
> >
>
--
Mansur Marvanov <nanorobocop at gmail.com>