If you are interested to add the code of the Exponential Integrals to Maxima, I
would chose the name you prefer. It is no problem to go back to the name
logintegral_li for the Logarithmic Integral.
Here my to-do list for the Exponential Integrals:
1. Numerical routine for real and complex parameter of E[n](z)
for Float and Bigfloat numbers.
2. Expansion in terms of the erfc function for half integral values
3. Transformation to a Hypergeometric representation
4. Switching beetwen different representations, e.g.
Exponential Integrals -> Gamma Incomplete or Trignometric Integrals
5. Support for symbolically complex characteristics like
imagpart(expintegral_ei(z)), realpart(), conjugate() and cabs().
Dieter Kaiser
-----Urspr?ngliche Nachricht-----
Von: robert.dodier at gmail.com [mailto:robert.dodier at gmail.com]
Gesendet: Samstag, 26. Juli 2008 17:52
An: Dieter Kaiser
Cc: maxima at math.utexas.edu
Betreff: Re: [Maxima] Naming of the Exponential Integrals
On 7/24/08, Dieter Kaiser <drdieterkaiser at web.de> wrote:
> expintegral_e (n z) - Exponential Integral En
> expintegral_e1 (z) - Exponential Integral E1
> expintegral_ei (z) - Exponential Integral Ei
> logintegral_li (z) - Logarithmic Integral Li
> expintegral_si (z) - Exponential Integral Si
> expintegral_ci (z) - Exponential Integral Ci
> expintegral_shi (z) - Exponential Integral Shi
> expintegral_chi (z) - Exponential Integral Chi
I like this naming scheme better.
> These names should emphasize that all this functions are sumerized as
> Exponential Integrals. But to be consistent we have to use for Li the name
> expintegral_li and not logintegral_li. I have chosen expintegral_li in my
last
> revision of the code.
I think I like logintegral_li better, but either way it is OK by me.
best
Robert Dodier