a problem with linear system of 4 differential equation





mssivava wrote:
> 
> Hi everyone,
> 
> I have 4 linear system of differential equations which are
> 
> eqn_1:diff(u(z),z,1)+om(z)=0;
> eqn_2:diff(om(z),z,1)-m(z)/d-(gam^2*p/d)=0;
> eqn_3:diff(m(z),z,1)-t(z)=0;
> eqn_4:diff(t(z),z,1)+p=0;
> 
> 
> My initial conditions are u(0)=0, om(0)=0
> My boundary conditons are u(L)=0, m(L)=0
> 
> I would like to find u(z), om(z), m(z) and t(z) 
> 
> So, I tried to use desolve function to solve this equation system. But I
> couldn't. Can anyone help me to solve this system.
> 
> Thanks in advance
> 
> Here is the solution by Volker van Nek
> 
> Hi,
> 
> the function desolve can solve your initial value problem. View
> documentation by typing
> ? desolve
> for more examples. And there is a chapter on differential equations in the
> manual.
> 
> (%i1) display2d:false$
> (%i2) eqn_1: 'diff(u(z),z,1)+om(z)=0$
> (%i3) eqn_2: 'diff(om(z),z,1)-m(z)/d-(gam^2*p/d)=0$
> (%i4) eqn_3: 'diff(m(z),z,1)-t(z)=0$
> (%i5) eqn_4: 'diff(t(z),z,1)+p=0$
> (%i6) atvalue(u(z),z=0,0)$
> (%i7) atvalue(om(z),z=0,0)$
> (%i8) sol: desolve([eqn_1,eqn_2,eqn_3,eqn_4], [u(z),om(z),m(z),t(z)])$
> (%i9) sol: ratsimp(sol)$
> 
> For better readability I omit Maxima's response here. By replacing the $
> by ; you'll see the
> answers.
> 
> The boundary values you can use to eliminate the unknown m(0) and t(0).
> 
> (%i10) bc_1: subst(L,z,rhs(sol[1]))=0$
> (%i11) bc_2: subst(L,z,rhs(sol[3]))=0$
> (%i12) sol: eliminate(append(sol,[bc_1,bc_2]),[m(0),t(0)])$
> (%i13) sol: solve(sol,[u(z),om(z),m(z),t(z)])$
> 
> L is introduced. I declare z to be the main variable and simplify.
> 
> (%i14) declare(z,mainvar)$
> (%i15) sol: ratsimp(sol)$
> 
> I hope you like the result.
> 
> Volker van Nek
>  
> 
> 

-- 
View this message in context: http://www.nabble.com/a-problem-with--linear-system-of-4-differential-equation-tp19145994p19150959.html
Sent from the Maxima mailing list archive at Nabble.com.