simplification of (4-4*x^2)*sqrt(1-x^2)



Automatically, we have (1-x^2) * sqrt(1-x^2) --> (1-x^2)^(3/2), but I don't
even
know of a command that crunches (4-4*x^2)*sqrt(1-x^2) --> 4 * (1-x^2)^
(3/2). Is there
a command that does this simplification?

OK:

 (%i81) (1-x^2) * sqrt(1-x^2);
 (%o81) (1-x^2)^(3/2)

Not so OK:

 (%i87) (4-4*x^2) * sqrt(1-x^2);
 (%o87) (4-4*x^2)*sqrt(1-x^2)

 (%i88) ratsimp(%);
 (%o88) (4-4*x^2)*sqrt(1-x^2)

 (%i89) radcan(%);
 (%o89) sqrt(1-x)*sqrt(x+1)*(4-4*x^2)


What I was really trying to do:

 (%i98) hgfred([1,-1/2],[2],x^2) *x^2;
 (%o98) (2*x^2*(sqrt(x^2)/(1-x^2)+((1-sqrt(1-x^2))*sqrt(x^2))/(1-x^2)^
 (3/2)+(1-sqrt(1-x^2))/(sqrt(1-x^2)*sqrt(x^2)))*(1-x^2)^(3  /2))/(3*sqrt
 (x^2))

Could be -(2/3) * (1-x^2)^(3/2) + constant:

  (%i99) ratsimp(%);
  (%o99) (sqrt(1-x^2)*(2*x^4-2*x^2)+2*x^2)/(3*x^2)

  (%i100) factor(%);
  (%o100) (2*(x^2*sqrt(1-x^2)-sqrt(1-x^2)+1))/3


Barton