Plotting vector fields in Maxima



I've written a couple of functions for plotting vector fields in Maxima.  My
Maxima skill is only modest, so I suspect experts may find more elegant ways
to code this.  The labeling of the axes, if nothing else, could be improved,
since my code labels them with lisp names (i.e. $X instead of x).

If you try this code and find the arrow heads on your 3D plots look wrong, I
believe it is due to a bug in Maxima, which I reported (with a patch) today:
https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3136608&group_id=4933
You should be able to get acceptable plots if you start Maxima fresh,
and
try your 3D plots right away, before doing any other plotting.  (In truth, I
suspect there might be a second bug here--not respecting any head_length
commands until after draw2d has run--but it works.)

/* plot_vector_field( F, X, Y, ... )
 * Draws a 2D vector field
 *  F - a vector containing field components
 *  X - name and bounds of first coordinate
 *  Y - name and bounds of second coordinate
 * optional parameters:
 *   scale=1   auto-scaling of arrows (default)
 *   scale=0   no auto-scaling
 *   scale=*   adjust arrows shorter -- numbers between 0 and 1
 *              or longer -- numbers greater than 1
 *   other parameters pass through to draw environment
 * Example:
 *  load(draw)$
 *  plot_vector_field( [-y,x], [x,-1,1],[y,-1,1] )$
 *  plot_vector_field( [-y,x], [x,-1,1],[y,-1,1], scale=0 )$
 */

plot_vector_field( F, X, Y, [args] ) := block(
 [vars, G,P,Q, points, grid_d,u,scale, range,xrange,yrange, v],
 scale : assoc('scale,args,1), args:delete( 'scale=scale, args ),
 /* create function versions of each componont and of the field itself */
 vars : [ X[1],Y[1] ],
 P : G( vars, ev(F[1])), P : subst( lambda, G, P ),
 Q : G( vars, ev(F[2])), Q : subst( lambda, G, Q ),
 G : lambda( [z], [apply(P,z), apply(Q,z)] ),
 /* create a list of points to base arrows at */
 points : listify( cartesian_product(
      setify( makelist(  X[2] + (X[3]-X[2])*i/10, i, 0, 10 )),
      setify( makelist(  Y[2] + (Y[3]-Y[2])*i/10, i, 0, 10 )) )),
 /* diagonal length of a grid square */
 grid_d : sqrt((X[3]-X[2])^2 + (Y[3]-Y[2])^2)/10.0,
 /* u is the divisor that shortens arrows to fit in grid squares */
 u : max( apply( max, makelist( abs(P(k[1],k[2])), k, points )) /
(X[3]-X[2]) * 10,
          apply( max, makelist( abs(Q(k[1],k[2])), k, points )) /
(Y[3]-Y[2]) * 10 ),
 if scale#0 and u>grid_d/50.0 then u:scale/u else u:1,
 /* xrange and yrange need to be large enough to contain head
  * and tail of each arrow (or some won't appear in output) */
 range : lambda( [z], [ apply(min,z), apply(max,z) ] ),
 xrange : range( flatten(makelist( [k[1],k[1]+P(k[1],k[2])], k, points ))),
 yrange : range( flatten(makelist( [k[2],k[2]+Q(k[1],k[2])], k, points ))),
 /* generate the vectors to draw and set an appropriate arrow
  * head length for each one */
 v : flatten( makelist( [head_length=u*sqrt(G(k).G(k))/5+grid_d/100,
vector(k, u*G(k) )], k, points )),
 /* draw! */
 apply( draw2d,
append([color=blue],[line_width=1],[head_type='nofilled],[head_angle=20],['xrange=xrange],['yrange=yrange],[xlabel=X[1]],[ylabel=Y[1]],
args, v ))
)$

/* plot_vector_field3d( F, X, Y, Z, ... )
 * Draws a 3D vector field
 *  F - a vector containing field components
 *  X - name and bounds of first coordinate
 *  Y - name and bounds of second coordinate
 *  Z - name and bounds of third coordinate
 * optional parameters:
 *   scale=1   auto-scaling of arrows (default)
 *   scale=0   no auto-scaling
 *   scale=*   adjust arrows shorter -- numbers between 0 and 1
 *              or longer -- numbers greater than 1
 *   other parameters pass through to draw environment
 * Example:
 *  load(draw)$
 *  plot_vector_field3d( [-y,x,z], [x,-1,1],[y,-1,1],[z,-1,1] )$
 *  plot_vector_field3d( [-y,x,z], [x,-1,1],[y,-1,1],[z,-1,1], scale=0 )$
 */
plot_vector_field3d( F, X, Y, Z, [args] ) := block(
 [vars, G,P,Q,R, points, grid_d,u,scale, range,xrange,yrange,zrange, v],
 scale : assoc('scale,args,1), args:delete( 'scale=scale, args ),
 /* create function versions of each componont and of the field itself */
 vars : [ X[1],Y[1],Z[1] ],
 P : G( vars, ev(F[1])), P : subst( lambda, G, P ),
 Q : G( vars, ev(F[2])), Q : subst( lambda, G, Q ),
 R : G( vars, ev(F[3])), R : subst( lambda, G, R ),
 G : lambda( [z], [apply(P,z), apply(Q,z), apply(R,z)] ),
 /* create a list of points to base arrows at */
 points : listify( cartesian_product(
      setify( makelist(  X[2] + (X[3]-X[2])*i/5, i, 0, 5 )),
      setify( makelist(  Y[2] + (Y[3]-Y[2])*i/5, i, 0, 5 )),
      setify( makelist(  Z[2] + (Z[3]-Z[2])*i/5, i, 0, 5 )) )),
 /* the diagonal length of a grid square */
 grid_d : sqrt((X[3]-X[2])^2 + (Y[3]-Y[2])^2 + (Z[3]-Z[2])^2)/5.0,
 /* u is the divisor that shortens arrows to fit in grid squares */
 u : max( apply( max, makelist( abs(P(k[1],k[2],k[3])), k, points )) /
(X[3]-X[2]) * 5,
          apply( max, makelist( abs(Q(k[1],k[2],k[3])), k, points )) /
(Y[3]-Y[2]) * 5,
          apply( max, makelist( abs(R(k[1],k[2],k[3])), k, points )) /
(Z[3]-Z[2]) * 5 ),
 if scale#0 and u>grid_d/50.0 then u:scale/u else u:1,
 /* xrange,yrange,zrange need to be large enough to contain head
  * and tail of each arrow (or some won't appear in output) */
 range : lambda( [z], [ apply(min,z), apply(max,z) ] ),
 xrange : range( flatten(makelist( [k[1],k[1]+P(k[1],k[2],k[3])], k, points
))),
 yrange : range( flatten(makelist( [k[2],k[2]+Q(k[1],k[2],k[3])], k, points
))),
 zrange : range( flatten(makelist( [k[3],k[3]+R(k[1],k[2],k[3])], k, points
))),
 /* generate the vectors to draw and set an appropriate arrow
  * head length for each one */
 v : flatten(makelist( [head_length=u*sqrt(G(k).G(k))/10+grid_d/100,
vector(k, u*G(k))], k, points )),
 /* draw! */
 apply( draw3d,
append([color=blue],[line_width=1],[head_type='nofilled],[head_angle=10],['xrange=xrange],['yrange=yrange],['zrange=zrange],[xlabel=X[1]],[ylabel=Y[1]],[zlabel=Z[1]],
args, v ))
)$

I would like to contribute this code to the Maxima project to be licensed
under the same terms as Maxima itself.

Donald J Bindner