hyperbolic functions



I haven't found an *automated* way of reexpressing this with tanh.

However, but substituting atanh(tanh(x)) for x (but temporarily blocking the
simplification), you can derive the result:

(%i56) f:  y = (%e^(2*x)+1)/(%e^(2*x)-1)+%c$

(%i57) subst(atanh(box(tanh(x))),x,f);

(%o57) y = (%e^(2*atanh(box(tanh(x))))+1)/(%e^(2*atanh(box(tanh(x))))-1)+%c

(%i58) expand(rembox(ratsimp(logarc(%))));

(%o58) y = 1/tanh(x)+%c


On Sun, Jan 9, 2011 at 06:08, nijso beishuizen <
nijso at numerically-related.com> wrote:

> f:  y = (%e^(2*x)+1)/(%e^(2*x)-1)+%c;