Question regarding detecting roots of polynom



Hi,
I am using Maxima 5.20.1 http://maxima.sourceforge.net using Lisp GNU 
Common Lisp (GCL) GCL 2.6.7 (a.k.a. GCL) on Ubuntu 10.04 LTS
I was building an 18 degree polynom like

x^18-36*%i*x^17+83*x^17-2818*%i*x^16+2591*x^16-95676*%i*x^15+31291*x^15
     -1829926*%i*x^14-222415*x^14-21043560*%i*x^13-13429735*x^13
     -134373950*%i*x^12-221505091*x^12-162118764*%i*x^11-2100454047*x^11
     +5328348982*%i*x^10-12519554958*x^10+54789418068*%i*x^9-44078314424*x^9
     
+287090759824*%i*x^8-50671326176*x^8+912058259616*%i*x^7+322740608816*x^7
     +1651930704544*%i*x^6+1945453962592*x^6+873591016128*%i*x^5
     +5209884712576*x^5-3122885337856*%i*x^4+7794942136576*x^4
     -7959302616576*%i*x^3+5886979568640*x^3-8129574092800*%i*x^2
     +690482554880*x^2-3774525235200*%i*x-1846961971200*x-585326592000*%i
     -841015296000$

  with roots that have always integers for real an imaginary part
If I am using solve(polynom,x) I always end up in:
[x = - 3, x = - 1, x = - 4, x = - 8, x = - 6,
      13                 12                     11                        10
0 = x   + (61 - 36 %i) x   + (1070 - 2026 %i) x   + (- 44660 %i - 3830) x
                            9                             8
  + (- 460920 %i - 371147) x  + (- 1529088 %i - 5353727) x
                              7                               6
  + (13544402 %i - 35943060) x  + (168139960 %i - 102170200) x
                                5                                 4
  + (740595920 %i + 109209296) x  + (1349765824 %i + 1597658416) x
                                 3                                 2
  + (4170648640 - 226610976 %i) x  + (3755946880 - 4231612800 %i) x
  + (- 4647635200 %i - 468851200) x - 1016192000 %i - 1460096000]

so Maxima seems to get the pure real values and then stops.
If a freind uses Matlab or in Online Mathematica I get the exact solutions.

Is the implementation of Berlekamp/Kronecker etc. in Maxima not so good 
or I am using wrong settings?
Solutions can be guessed with algsys, but that is of course not so nice.

Thx and Best regards,
Wilfried