I'm still struggling with how to manipulate equations
so that Maxima can solve them.? See example below.
Is there a document somewhere that gives general
guidance, and examples, how to use to_poly_solve?
Maxima script without output:
(%i1)kill(all)$ display2d: false$
(%i2) s: (1/r)*f*(tau[f]+tau[r])/2;
(%i3) F[f]:sqrt((tau[f]/r)^2+s^2);
(%i4) eq1: F[f]=mu*a*W/2;
(%i5) F[r]:sqrt((tau[r]/r)^2+s^2);
(%i6) eq2: F[r]=mu*(1-a)*W/2;
(%i7) solve([eq1,eq2],[tau[f],tau[r]]);
Same script, with output:
(%i1) kill(all)$ display2d: false;
(%o1) false
(%i2) s: (1/r)*f*(tau[f]+tau[r])/2;
(%o2) f*(tau[r]+tau[f])/(2*r)
(%i3) F[f]:sqrt((tau[f]/r)^2+s^2);
(%o3) sqrt(f^2*(tau[r]+tau[f])^2/(4*r^2)+tau[f]^2/r^2)
(%i4) eq1: F[f]=mu*a*W/2;
(%o4) sqrt(f^2*(tau[r]+tau[f])^2/(4*r^2)+tau[f]^2/r^2) = a*mu*W/2
(%i5) F[r]:sqrt((tau[r]/r)^2+s^2);
(%o5) sqrt(f^2*(tau[r]+tau[f])^2/(4*r^2)+tau[r]^2/r^2)
(%i6) eq2: F[r]=mu*(1-a)*W/2;
(%o6) sqrt(f^2*(tau[r]+tau[f])^2/(4*r^2)+tau[r]^2/r^2) = (1-a)*mu*W/2
(%i7) solve([eq1,eq2],[tau[f],tau[r]]);
(%o7) []