(%i1) display(foo)$
foo = foo
(%i2) disp(foo)$
foo
Maybe disp is what you want.
Volker van Nek
2012/3/27 Sara Pashmin <sarapashm at googlemail.com>
> Hello,
>
> I try to solve inequalities of a list with Maxima.
>
> A simple example is:
>
> load(to_poly_solver) $
> y : [1,4,8]$
> for i:1 step 1 thru length(y) do
> ( tt[i]: %solve( [(x[i]^2-y[i])<0, (x[i])<0], [x[i]]),
> display (tt[i])
> );
>
> the answer:
>
> (%o144) [1,4,8]
> tt[1]=%union([-1<x[1],x[1]<0])
> tt[2]=%union([-2<x[2],x[2]<0])
> tt[3]=%union([x[3]<0,-(x[3]^2-8)>0])
> (%o145)
>
> I would like to know :
>
> 1) how to get a result of tt[3] like that:
>
> %union( [x[3]<0 , x[3]>-2.828])
>
> and:
> 2) how to display the results of "x" without using "display (tt[i])".
> For example when I use the single variable (without list and "for") like
> this:
> y : 8$
> %solve( [(x^2-y)<0, (x)<0], [x]);
> I get the following result of x:
> (%o157) %union([x<0,-(x^2-8)>0])
>
> I will be thankfur for help,
>
> Best Regards
>
> Sarah
> _______________________________________________
> Maxima mailing list
> Maxima at math.utexas.edu
> http://www.math.utexas.edu/mailman/listinfo/maxima
>