>>>>> "Leevi" == Leevi P?ldaru <leeviz at gmail.com> writes:
Leevi> Im using Maxima 5.30.0 (wxMaxima 13.04.0) on mac and i need to solve robotic arm
Leevi> equations for a course in univ.
Leevi> The equation.
Leevi> matrix([−205.4930143632622],[2048.075805622338],[−1412.179747417211],[1.0])=matrix([−sin(a1)*(sin(a2)*(1306.6−265.4*sin(a3))+cos(a2)*(265.4*cos(a3)+1190.6)+399.0)],[cos(a1)*(sin(a2)*(1306.6−265.4*sin(a3))+cos(a2)*(265.4*cos(a3)+1190.6)+399.0)],[−cos(a2)*(1306.6−265.4*sin(a3))+sin(a2)*(265.4*cos(a3)+1190.6)−495.4],[1.0])
Leevi> or
Leevi> eq1:−sin(a1)*(sin(a2)*(1306.6−265.4*sin(a3))+cos(a2)*(265.4*cos(a3)+1190.6)+399.0)=−205.4930143632622;
Leevi> eq2:
Leevi> cos(a1)*(sin(a2)*(1306.6−265.4*sin(a3))+cos(a2)*(265.4*cos(a3)+1190.6)+399.0)=2048.075805622338;
Leevi> eq3:−cos(a2)*(1306.6−265.4*sin(a3))+sin(a2)*(265.4*cos(a3)+1190.6)−495.4=−1412.179747417211;
Leevi> solve([eq1,eq2, eq3], [a1,a2,a3]);
Since you have floating-point numbers and presumably want a numerical
solution, I would suggest mnewton:
load(mnewton)$
mnewton([eq1,eq2,eq3],[a1,a2,a3],[0,0,0]);
[[a1 = .09999999999999999, a2 = .2000000000000002, a3 = .2999999999999974]]
subst(%[1], [eq1,eq2,eq3]) shows that these are indeed solutions to
the equations.
Ray