integrate(sqrt(1+cos(x)^2),x)



>>>>> "Aleksas" == Aleksas Domarkas <aleksasd873 at gmail.com> writes:

    Aleksas> On Thu, 31 Oct 2013 16:27:45 -0700
    Aleksas> Raymond Toy <toy.raymond at gmail.com>
    Aleksas> writes:
>>>>> "Martin" == Martin Kraska <kraska at fh-brandenburg.de> writes:
    Aleksas> ??? Martin> Hi,
    Aleksas> ??? Martin> using Maxima 5.31.2 I tried this:
    Aleksas> ??? Martin> integrate(sqrt(1+cos(x)^2),x) and get nothing but the input.
    Aleksas> ??? Martin> When loading abs_integrate, the result is an error:
    Aleksas> ??? Martin> sign: argument cannot be imaginary; found %i
    Aleksas> ??? Martin> #0:
    Aleksas> ??? Martin>
    Aleksas> intfudu(exp=sqrt(6*%e^-(2*%i*x)+%e^-(4*%i*x)+1)*%e^(%i*x),%voi=x)(partition.
    Aleksas> ??? Martin> mac line 95)
    Aleksas> ??? Martin> #1:
    Aleksas> extra_integrate(q=sqrt(6*%e^-(2*%i*x)+%e^-(4*%i*x)+1)*%e^(%i*x),x=x)
    Aleksas> ??? Martin> -- an error. To debug this try: debugmode(true);
    Aleksas> ??? Martin> Maple gives:
    Aleksas> ??? Martin> {sqrt(sin(x)^2)*EllipticE(cos(x),i)}/sin(x)
    Aleksas> ??? Martin> Can this be done in Maxima?
    Aleksas> As you've discovered, Maxima cannot do this integral.? Maxima
    Aleksas> currently has no support for elliptic integrals.
    Aleksas> I've done a little work on this, but have never finished it. It
    Aleksas> definitely won't recognize this integral, but it might recognize the
    Aleksas> equivalent integrate(sqrt(1+x^2)/sqrt(1-x^2),x). I didn't try it,
    Aleksas> however.
    Aleksas> Ray

    Aleksas> Example. Compute integrate(sqrt(1+cos(x)^2),x).
    Aleksas> (%i1) f:sqrt(1+cos(x)^2);
    Aleksas> (%o1) sqrt(cos(x)^2+1)
    Aleksas> After reading maxima documentation about elliptic integrals
    Aleksas> I conclude that the answer is
    Aleksas> (%i2) F:elliptic_e(x-%pi/2, -1);
    Aleksas> (%o2) elliptic_e(x-%pi/2,-1)
    Aleksas> Test:
    Aleksas> (%i3) diff(F,x);
    Aleksas> (%o3) sqrt(cos(x)^2+1)
    Aleksas> Only the derivative with respect to x is known by Maxima.
    Aleksas> Serious problems obtained in the calculation of the numerical values of F.

Don't leave us hanging! What serious problems did you encounter in
computing the numerical values?

Ray