problem with limits at infinity



 > On Fri, Nov 8, 2013 at 5:05 PM, Dan Drake <ddrake at math.wisc.edu
> <mailto:ddrake at math.wisc.edu>> wrote:
>
>     Hello,
>
>     A Sage user encountered a problem that seems to come from Maxima. See
>     https://groups.google.com/forum/#!topic/sage-support/dwR4kuBmiQo
>     <https://groups.google.com/forum/#%21topic/sage-support/dwR4kuBmiQo>;.
>     In
>     Sage:
>
>     sage: n = var('n')
>     sage: assume(n>0)
>     sage: series = -(3*n^2 + 1)*(-1)^n/sqrt(n^5 + 8*n^3 + 8)
>     sage: limit(series, n=infinity)
>     38/25*pi^2*und
>
>     And in Maxima:
>
>     (%i6) display2d:false;
>
>     (%o6) false
>     (%i7) limit(-(3*n^2 + 1)*(-1)^n/sqrt(n^5 + 8*n^3 + 8),n,inf);
>
>     (%o7) -38*und*log(-1)^2/25
>
>     I would expect Maxima to evaluate the limit and get zero.
>     (Possibly with
>     some encouragement?)
>
>     (I'm not on the mailing list, I'm just reporting a bug -- further
>     discussion can be directed to the sage-support mailing list or to our
>     trac ticket: http://trac.sagemath.org/ticket/15386.)
>
>     Thanks,
>
>     Dan


 It is easy to prove:
If  limit(|x[n]|, n, inf)=0 then limit(x[n], n, inf)=0.

(%i1) limit(abs(-(3*n^2 + 1)*(-1)^n/sqrt(n^5 + 8*n^3 + 8)),n,inf);
(%o1) 0
 Then limit(-(3*n^2 + 1)*(-1)^n/sqrt(n^5 + 8*n^3 + 8),n,inf) = 0.

best
Aleksas D