Vorige: , Nach oben: Bessel-Funktionen und verwandte Funktionen   [Inhalt][Index]

22.2.4 Struve-Funktionen

Funktion: struve_h (v, z)

Die Struve-Funktion \(H\) der Ordnung \(v\) mit dem Argument \(z\). Siehe Abramowitz und Stegun, Handbook of Mathematical Functions, Kapitel 12. Die Definition ist

                       inf
                       ====                  k  2 k
               z v + 1 \                (- 1)  z
      H (z) = (-)       >    ----------------------------------
       v       2       /      2 k           3                3
                       ====  2    gamma(k + -) gamma(v + k + -)
                       k = 0                2                2

Die Struve-Funktion struve_h ist für das numerische und symbolische Rechnen geeignet. Im Unterschied zu den Bessel-Funktionen ist jedoch die Implementation der Funktion struve_h weniger vollständig.

Maxima berechnet struve_h numerisch für reelle und komplexe Gleitkommazahlen als Argumente für \(v\) und \(z\). Mit der Funktion float oder der Optionsvariablen numer kann die numerische Auswertung erzwungen werden, wenn die Argumente Zahlen sind. Die numerische Berechnung für große Gleitkommazahlen ist nicht implementiert. In diesem Fall gibt Maxima eine Substantivform zurück.

Hat die Optionsvariable besselexpand den Wert true, wird die Struve-Funktion struve_h mit einer halbzahligen Ordnung \(v\) als Sinus- und Kosinusfunktionen entwickelt.

Maxima kennt die Ableitung der Struve-Funktion struve_h nach dem Argument \(z\).

Siehe auch die Struve-Funktion struve_l.

Beispiele:

(%i1) struve_h(1, 0.5);
(%o1)                  .05217374424234107
(%i2) struve_h(1, 0.5+%i);
(%o2)       0.233696520211436 %i - .1522134290663428
(%i3) struve_h(3/2,x), besselexpand: true;
                                           2
                  2 x sin(x) + 2 cos(x) - x  - 2
(%o3)           - ------------------------------
                                         3/2
                      sqrt(2) sqrt(%pi) x
(%i4) diff(struve_h(v, x), x);
                   v
                  x
(%o4) (------------------------- - struve_h(v + 1, x)
                  v           3
       sqrt(%pi) 2  gamma(v + -)
                              2
                                          + struve_h(v - 1, x))/2
Funktion: struve_l (v, z)

Die modifizierte Struve-Funktion \(L\) der Ordnung \(v\) mit dem Argument \(z\). Siehe Abramowitz und Stegun, Handbook of Mathematical Functions, Kapitel 12. Die Definition ist

                       inf
                       ====                  2 k
               z v + 1 \                    z
      L (z) = (-)       >    ----------------------------------
       v       2       /      2 k           3                3
                       ====  2    gamma(k + -) gamma(v + k + -)
                       k = 0                2                2

Die Struve-Funktion struve_l ist für das numerische und symbolische Rechnen geeignet. Im Unterschied zu den Bessel-Funktionen ist jedoch die Implementation der Funktion struve_l weniger vollständig.

Maxima berechnet struve_l numerisch für reelle und komplexe Gleitkommazahlen als Argumente für \(v\) und \(z\). Mit der Funktion float oder der Optionsvariablen numer kann die numerische Auswertung erzwungen werden, wenn die Argumente Zahlen sind. Die numerische Berechnung für große Gleitkommazahlen ist nicht implementiert. In diesem Fall gibt Maxima eine Substantivform zurück.

Hat die Optionsvariable besselexpand den Wert true, wird die Struve-Funktion struve_l mit einer halbzahligen Ordnung \(v\) als Sinus- und Kosinusfunktionen entwickelt.

Maxima kennt die Ableitung der Struve-Funktion struve_l nach dem Argument \(z\).

Siehe auch die Struve-Funktion struve_h.

Beispiele:

(%i1) struve_l(1, 0.5);
(%o1)                  .05394218262352267
(%i2) struve_l(1, 0.5+%i);
(%o2)       .1912720461247995 %i - .1646185598117401
(%i3) struve_l(3/2,x), besselexpand: true;
                                           2
                2 x sinh(x) - 2 cosh(x) - x  + 2
(%o3)           --------------------------------
                                        3/2
                     sqrt(2) sqrt(%pi) x
(%i4) diff(struve_l(v, x), x);
                   v
                  x
(%o4) (------------------------- + struve_l(v + 1, x)
                  v           3
       sqrt(%pi) 2  gamma(v + -)
                              2
                                          + struve_l(v - 1, x))/2

Vorige: , Nach oben: Bessel-Funktionen und verwandte Funktionen   [Inhalt][Index]

JavaScript license information