Greetings.
The code that I am about to refer to is included at the end of this
message. I am running MAXIMA on a SuSE Linux 7.1 system. I installed
it from
maxima-5.4-1.i386.rpm.
What does the following output from linsolve mean?
(C79) vvs : LINSOLVE(L, vs)
Dependent equations eliminated: (4 7 63 79 94 108 121 133 144 64 80 95 109 122 134 65 81 96 110 123 66
82 97 111 67 83 98 2 6 84 85 86 115)
Inconsistent equations: $ERREXP1
-- an error. Quitting. To debug this try DEBUGMODE(TRUE);)
(C80) PRINT(ERREXP1);
Error: Caught fatal error [memory may be damaged]
Fast links are on: do (si::use-fast-links nil) for debugging
Error signalled by CATCH.
Broken at MACSYMA-TOP-LEVEL. Type :H for Help.
Why doesn't it display the inconsistent equations by number as is
usually the case? What should I make of ERREXP1 and the error message
that appears when I try to access it?
Thanks in advance for your help,
Marko Riedel
----------------------------------------------------------------------
f : z*u/(1-z)/(1-z*u);
r : 1/(1-z);
r1 : z^2/(1-z)^4;
r2 : 8*z^3/(1-z)^6;
ru : SUBST(z*u, z, r);
ru1 : SUBST(z*u, z, r1);
ru2 : SUBST(z*u, z, r2);
G : -1/3*u*z^3*(u^3*z^3 + u^2*z^3 -6*u^2*z^2 +
3*u^2*z + 3*u*z - u^2 - 1)
/(1-z)^4/(1-z*u)^4;
t1 : u*ru2*f;
t2 : 2*u*ru1*G;
t3 : u*ru*G1;
t4 : u*ru2*r;
t5 : 2*u*ru1*r1;
t6 : u*ru*r2;
t7 : r2*f;
t8 : 2*r1*G;
t9 : r*G1;
rhs1 : FACTOR(t1+t2+t4+t5+t6+t7+t8);
rhs2 : FACTOR(RAT(t3+t9));
count : 0;
s : 0;
vs : [];
t : 0;
FOR I:0 WHILE I<=1 DO
(t : t + CONCAT('v, count)*u^I,
vs : CONS(CONCAT('v, count), vs),
count : count+1);
s : s + t/(1-z);
t : 0;
FOR I:0 WHILE I<=2 DO
(t : t + CONCAT('v, count)*u^I,
vs : CONS(CONCAT('v, count), vs),
count : count+1);
s : s + t/(1-z)^2;
t : 0;
FOR I:0 WHILE I<=3 DO
(t : t + CONCAT('v, count)*u^I,
vs : CONS(CONCAT('v, count), vs),
count : count+1);
s : s + t/(1-z)^3;
t : 0;
FOR I:0 WHILE I<=4 DO
(t : t + CONCAT('v, count)*u^I,
vs : CONS(CONCAT('v, count), vs),
count : count+1);
s : s + t/(1-z)^4;
t : 0;
FOR I:0 WHILE I<=5 DO
(t : t + CONCAT('v, count)*u^I,
vs : CONS(CONCAT('v, count), vs),
count : count+1);
s : s + t/(1-z)^5;
t : 0;
FOR I:0 WHILE I<=6 DO
(t : t + CONCAT('v, count)*u^I,
vs : CONS(CONCAT('v, count), vs),
count : count+1);
s : s + t/(1-z)^6;
t : 0;
FOR I:0 WHILE I<=7 DO
(t : t + CONCAT('v, count)*u^I,
vs : CONS(CONCAT('v, count), vs),
count : count+1);
s : s + t/(1-z)^7;
t : 0;
FOR I:0 WHILE I<=1 DO
(t : t + CONCAT('v, count)*u^I,
vs : CONS(CONCAT('v, count), vs),
count : count+1);
s : s + t/(1-z*u);
t : 0;
FOR I:0 WHILE I<=2 DO
(t : t + CONCAT('v, count)*u^I,
vs : CONS(CONCAT('v, count), vs),
count : count+1);
s : s + t/(1-z*u)^2;
t : 0;
FOR I:0 WHILE I<=3 DO
(t : t + CONCAT('v, count)*u^I,
vs : CONS(CONCAT('v, count), vs),
count : count+1);
s : s + t/(1-z*u)^3;
t : 0;
FOR I:0 WHILE I<=4 DO
(t : t + CONCAT('v, count)*u^I,
vs : CONS(CONCAT('v, count), vs),
count : count+1);
s : s + t/(1-z*u)^4;
t : 0;
FOR I:0 WHILE I<=5 DO
(t : t + CONCAT('v, count)*u^I,
vs : CONS(CONCAT('v, count), vs),
count : count+1);
s : s + t/(1-z*u)^5;
t : 0;
FOR I:0 WHILE I<=6 DO
(t : t + CONCAT('v, count)*u^I,
vs : CONS(CONCAT('v, count), vs),
count : count+1);
s : s + t/(1-z*u)^6;
t : 0;
FOR I:0 WHILE I<=7 DO
(t : t + CONCAT('v, count)*u^I,
vs : CONS(CONCAT('v, count), vs),
count : count+1);
s : s + t/(1-z*u)^7;
scale : 8;
f : (1-z)^scale*(1-z*u)^scale;
MULT(T) := RAT(T*f);
lhs : MAP(MULT, DIFF(s, z));
rhs1a : MAP(MULT, rhs1);
rhs2a : SUBST(MAP(MULT, s), G1, rhs2);
eq : EXPAND(lhs - rhs1a - rhs2a);
L : [];
coeffs : 16;
FOR I:0 WHILE I<=coeffs DO
Z[I] : COEFF(eq, z, I);
FOR I:0 WHILE I<=coeffs DO
FOR J:0 WHILE J<=coeffs DO
(C : COEFF(Z[I], u, J),
IF C#0 THEN L : CONS(C=0, L));
F : [];
FOR I:1 WHILE I<=coeffs*coeffs DO
F : CONS(CONCAT('%R, I)=0, F);
vvs : LINSOLVE(L, vs);