Maxima] "Maxima ports" page on Sourceforge



The numbers of downloads might be slightly misleading: on windows I have to download the package every time I have to reinstall the system while Ubuntu automatically installs the package from its own servers once somebody has volunteered to do all the work needed to make that happen. But you are right: am eagerly waiting for someone to build a windows package and to upload it to Sourceforge, too.



maxima-request at math.utexas.edu schrieb:
>Send Maxima mailing list submissions to
>	maxima at math.utexas.edu
>
>To subscribe or unsubscribe via the World Wide Web, visit
>	http://www.math.utexas.edu/mailman/listinfo/maxima
>or, via email, send a message with subject or body 'help' to
>	maxima-request at math.utexas.edu
>
>You can reach the person managing the list at
>	maxima-owner at math.utexas.edu
>
>When replying, please edit your Subject line so it is more specific
>than "Re: Contents of Maxima digest..."
>
>
>Today's Topics:
>
>   1. Re: Integrating a Taylor series? (Thomas D. Dean)
>   2. Re: Integrating a Taylor series? (Stavros Macrakis)
>   3. "Maxima ports" page on Sourceforge (Stavros Macrakis)
>   4. Re: Integrating a Taylor series? (Dennis J. Darland)
>
>
>----------------------------------------------------------------------
>
>Message: 1
>Date: Sat, 11 May 2013 11:30:23 -0700
>From: "Thomas D. Dean" <tomdean at speakeasy.org>
>To: maxima at math.utexas.edu
>Subject: Re: [Maxima] Integrating a Taylor series?
>Message-ID: <518E8E3F.1090700 at speakeasy.org>
>Content-Type: text/plain; charset=ISO-8859-1; format=flowed
>
>On 05/09/13 14:39, Dennis J. Darland wrote:
>> It might take a very long time, if you have enough memory!
>>
>
>Core i7 O.C. 4.2GHz 16G RAM.
>
> > maxima
>Maxima 5.29.1 http://maxima.sourceforge.net
>using Lisp GNU Common Lisp (GCL) GCL 2.6.7 (a.k.a. GCL)
>...
>(%i19) integrate(taylor(f(x),x,a,1),x,a,a+h);
>
>has been running 2 days, using 100% of 1 CPU and 1G RAM.  What is a
>very 
>long time?  How do I check to see if there is progress?
>
>
>Tom Dean
>
>
>
>------------------------------
>
>Message: 2
>Date: Sat, 11 May 2013 15:09:47 -0400
>From: Stavros Macrakis <macrakis at alum.mit.edu>
>To: "Thomas D. Dean" <tomdean at speakeasy.org>
>Cc: Dennis Darland <dennis.darland at yahoo.com>,	maxima mailing list
>	<maxima at math.utexas.edu>
>Subject: Re: [Maxima] Integrating a Taylor series?
>Message-ID:
>	<CACLVabXz783KwZMbjZRRy_zjYa5=sVJihU_tYY1VYS6zRvQPnQ at mail.gmail.com>
>Content-Type: text/plain; charset="iso-8859-1"
>
>Your integral should return instantaneously.  I don't know why an
>earlier
>correspondent claimed that this would take a long time and lots of
>memory.
>
>The fact that Maxima runs forever on this simply indicates that there
>is a
>bug. (Sorry!)
>
>Here's a little more detail:
>
>The correct answer is very simple.  taylor(f(x),x,a,1) returns
>
>             f(a)+('at('diff(f(x),x,1),x = a))*(x-a)
>
>f(a) is clearly independent of x, so integrate(f(a),x) =>x*f(a).
>
>'at('diff(f(x),x,1),x = a) is *also* independent of x -- x in this
>expression is a *dummy variable*, so this expression means the same
>thing
>as 'at('diff(f(y),y,1),y = a).  So integrate('at('diff(f(x),x,1),x = a)
>*(x-a) should be 'at('diff(f(x),x,1),x = a) *(x^2/2-a*x).
>
>Instead, Maxima is apparently getting into an infinite loop.  This is a
>bug. The simplest way I've found to elicit it is
>integrate(at(diff(f(x),x),x=3),x).
>
>A simple workaround is to rename all the dummy variables. Here's a
>simple
>way to do that:
>
>rename_dummies(expr) :=
>    subst(nounify(at) =
>                 lambda([ex,vareq],
>                        subst(gensym(),lhs(vareq),at(ex,vareq))),
>                    expr)$
>
>So now you can do
>
>     integrate( rename_dummies( taylor(f(x),x,a,1) ), x,a,a+h)
>
>and get the correct answer instantaneously.
>
>Bizarrely, Maxima is numbering gensyms starting at 34100, which makes
>the
>answer ugly, but still correct.
>
>                   -s
>
>I'm running Maxima 5.28 on GCL 2.6.8 on Windows
>
>On Sat, May 11, 2013 at 2:30 PM, Thomas D. Dean
><tomdean at speakeasy.org>wrote:
>
>> On 05/09/13 14:39, Dennis J. Darland wrote:
>>
>>> It might take a very long time, if you have enough memory!
>>>
>>>
>> Core i7 O.C. 4.2GHz 16G RAM.
>>
>> > maxima
>> Maxima 5.29.1 http://maxima.sourceforge.net
>> using Lisp GNU Common Lisp (GCL) GCL 2.6.7 (a.k.a. GCL)
>> ...
>> (%i19) integrate(taylor(f(x),x,a,1),**x,a,a+h);
>>
>> has been running 2 days, using 100% of 1 CPU and 1G RAM.  What is a
>very
>> long time?  How do I check to see if there is progress?
>>
>>
>> Tom Dean
>>
>> ______________________________**_________________
>> Maxima mailing list
>> Maxima at math.utexas.edu
>>
>http://www.math.utexas.edu/**mailman/listinfo/maxima<http://www.math.utexas.edu/mailman/listinfo/maxima>;
>>
>-------------- next part --------------
>URL:
><http://www.math.utexas.edu/pipermail/maxima/attachments/20130511/361a1eed/attachment-0001.html>;
>
>------------------------------
>
>Message: 3
>Date: Sat, 11 May 2013 15:22:29 -0400
>From: Stavros Macrakis <macrakis at alum.mit.edu>
>To: maxima mailing list <maxima at math.utexas.edu>
>Subject: "Maxima ports" page on Sourceforge
>Message-ID:
>	<CACLVabWrr9RC90nchSPPZEzw=odoehaPtt7SK8f4RswLJZ_hAw at mail.gmail.com>
>Content-Type: text/plain; charset="iso-8859-1"
>
>O
>n the Maxima ports page on
>Sourceforge<http://maxima.sourceforge.net/ports.html>;,
>there is a list of ports to Windows, GNU, etc. where the most recent
>version of Maxima is between 5.9 and 5.16.
>
>What is the point of this page, when the Sourceforge download
>page<http://sourceforge.net/projects/maxima/files/>has version 5.30 on
>Mac and Linux, and 5.28 on Windows?
>
>For that matter, why is the Windows version (which according to
>Sourceforge
>is downloaded about 8x more often than Mac and Linux together)
>two versions behind Mac and Linux
>?
>
>                      -s
>-------------- next part --------------
>URL:
><http://www.math.utexas.edu/pipermail/maxima/attachments/20130511/df43805a/attachment-0001.html>;
>
>------------------------------
>
>Message: 4
>Date: Sun, 12 May 2013 00:14:41 -0500
>From: "Dennis J. Darland" <student at dennisdarland.com>
>To: Stavros Macrakis <macrakis at alum.mit.edu>,	"thomas d. dean"
>	<tomdean at speakeasy.org>
>Cc: math maxima <maxima at math.utexas.edu>
>Subject: Re: [Maxima] Integrating a Taylor series?
>Message-ID: <6683243.j6CdZoYURi at linux-v14d.site>
>Content-Type: text/plain; charset="iso-8859-1"
>
>There is a big difference between 1 and 10 terms.
>I typically use 30 using automatic numeric differentiation.
>Check the sode link below.
>
>- 
>Dennis J. Darland
>student at dennisdarland.com
>http://dennisdarland.com/
>http://dennisdarland.com/philosophy/
>http://sode.sourceforge.net/
>
>On Saturday, May 11, 2013 03:09:47 PM you wrote:
>
>
>Your integral should return instantaneously.  I don't know why an
>earlier correspondent 
>claimed that this would take a long time and lots of memory.
>
>
>The fact that Maxima runs forever on this simply indicates that there
>is a bug. (Sorry!)
>
>
>
>
>Here's a little more detail:
>
>
>The correct answer is very simple.  taylor(f(x),x,a,1) returns 
>
>
>             f(a)+('at('diff(f(x),x,1),x = a))*(x-a)
>
>
>f(a) is clearly independent of x, so integrate(f(a),x) =>x*f(a).
>
>
>'at('diff(f(x),x,1),x = a) is /also/ independent of x -- x in this
>expression is a _dummy 
>variable_, so this expression means the same thing as
>'at('diff(f(y),y,1),y = a).  So 
>integrate('at('diff(f(x),x,1),x = a) *(x-a) should be
>'at('diff(f(x),x,1),x = a) *(x^2/2-a*x).
>
>
>Instead, Maxima is apparently getting into an infinite loop.  This is a
>bug. The simplest way 
>I've found to elicit it is integrate(at(diff(f(x),x),x=3),x).
>
>
>A simple workaround is to rename all the dummy variables. Here's a
>simple way to do that:
>
>
>rename_dummies(expr) :=
>    subst(nounify(at) = 
>                 lambda([ex,vareq],
>                        subst(gensym(),lhs(vareq),at(ex,vareq))),
>                    expr)$
>
>
>So now you can do 
>
>
>     integrate( rename_dummies( taylor(f(x),x,a,1) ), x,a,a+h) 
>
>
>and get the correct answer instantaneously.
>
>
>Bizarrely, Maxima is numbering gensyms starting at 34100, which makes
>the answer ugly, 
>but still correct.
>
>
>                   -s
>
>
>I'm running Maxima 5.28 on GCL 2.6.8 on Windows
>
>
>On Sat, May 11, 2013 at 2:30 PM, Thomas D. Dean
><tomdean at speakeasy.org[1]> wrote:
>
>
>On 05/09/13 14:39, Dennis J. Darland wrote:
>
>
>It might take a very long time, if you have enough memory!
>
>
>
>
>http://maxima.sourceforge.net[2]
>Maxima at math.utexas.edu[3]
>http://www.math.utexas.edu/mailman/listinfo/maxima[4]
>
>
>
>
>
>
>--------
>[1] mailto:tomdean at speakeasy.org
>[2] http://maxima.sourceforge.net
>[3] mailto:Maxima at math.utexas.edu
>[4] http://www.math.utexas.edu/mailman/listinfo/maxima
>-------------- next part --------------
>URL:
><http://www.math.utexas.edu/pipermail/maxima/attachments/20130512/1e853c9c/attachment.html>;
>
>------------------------------
>
>_______________________________________________
>Maxima mailing list
>Maxima at math.utexas.edu
>http://www.math.utexas.edu/mailman/listinfo/maxima
>
>
>End of Maxima Digest, Vol 82, Issue 20
>**************************************

-- 
Diese Nachricht wurde von meinem Android-Mobiltelefon mit K-9 Mail gesendet.